Optical Properties of Multiferroic BiFeO3 Films

نویسندگان

  • Hiromi Shima
  • Hiroshi Naganuma
  • Soichiro Okamura
چکیده

Lightwave communication systems are predominantly used for handling high-speed data traffic. Long-distance ground-based systems particularly depend on optical fibers. Several business and research facilities employ direct fiber connections, and fiber to the home (FTTH) technology is foreseeable in the near future. These developments are driven particulary by the high demand for bandwidth necessary for many computers contributing to internet traffic. Lightwave communication systems are one of the fastest growing industrial fields because of a few important inventions and extensive research and development by physicists and engineers. The key components of a long-distance lightwave communication system are semiconductor lasers, low-loss glass fibers, optical amplifiers, and photodetectors. Apart from these key elements, several additional functions are required to enable modulating, switching, and combining the optical signals. In addition, network traffic management and switching, routing, and distribution systems are essential. Therefore, we focused on the development of optical components such as modulators and switches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of SrRuO3 bottom layer in strain relaxation of BiFeO3 thin films deposited on lattice mismatched substrates

Articles you may be interested in Role of defects in BiFeO3 multiferroic films and their local electronic structure by x-ray absorption spectroscopy High symmetric SrRuO3 (001) thin films: Perfectly lattice-matched electrodes for multiferroic BiFeO3

متن کامل

DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS

Title of Dissertation: DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS Junling Wang, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Manfred Wuttig, Department of Materials Science and Engineering Multiferroics, defined as materials with coexistence of at least two of the electric, elastic, and magnetic orders, have attracted enormous research activities recentl...

متن کامل

The Effects of Multiphase Formation on Strain Relaxation and Magnetization in Multiferroic BiFeO3 Thin Films

Multiferroic materials simultaneously display ferroelectric and ferromagnetic properties in the same phase. [1] In the 1960s to 1970s, these materials were first investigated to understand the magnetoelectric (ME) coupling effect. Recently, there is increased interest in multiferroic materials because of their potential applications in novel devices using the magnetoelectric effects including s...

متن کامل

Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy

Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~4...

متن کامل

Strain control of domain-wall stability in epitaxial BiFeO3 (110) films.

We have studied the stability of domains and domain walls in multiferroic BiFeO3 thin films using a combination of piezoelectric force microscopy and phase-field simulations. We have discovered that a film-substrate misfit strain may result in a drastically different thermodynamic stability of two parallel domain walls with the same orientation. A fundamental understanding of the underlying phy...

متن کامل

Domain Engineering for Enhanced Ferroelectric Properties of Epitaxial (001) BiFeO Thin Films

Adv. Mater. 2009, 21, 817–823 2009 WILEY-VCH Verlag Gm Multiferroic BiFeO3 has attracted great interest due to its promising application tomagnetoelectric devices. In addition, the high remanent polarization and piezoelectric response of BiFeO3 thin films, which are comparable to those of conventional Ti-rich lead zirconia titanate, suggested BiFeO3 as a strong candidate for lead-free nonvolati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017